

Available online at www.sciencedirect.com

Journal of Organometallic Chemistry 692 (2007) 5492-5494

www.elsevier.com/locate/jorganchem

Synthesis and characterisation of $[AlMe_n{Si(SiMe_3)_3}_{3-n}(thf)]$ (*n* = 1 or 2)

Note

James D. Farwell, Peter B. Hitchcock, Michael F. Lappert *

Chemistry Department, University of Sussex, Brighton BN1 9QJ, UK

Received 11 July 2007; accepted 14 August 2007 Available online 19 August 2007

Abstract

The crystalline compounds $[AlMe_n{Si(SiMe_3)_3}_{3-n}(thf)][n = 2 (1) \text{ or } 1 (2)]$ were prepared from the lithium sisyl $[Li{Si(SiMe_3)_3}(thf)_3]$ (A) and the appropriate methylaluminium chloride $[AlCl_{3-n}Me_n]$ in thf. The X-ray structure of 1 is reported. Unlike A or a magnesium sisyl $[Mg{Si(SiMe_3)_3}_2(thf)_2]$ (B), neither 1 nor 2 underwent an insertion reaction with an α -H-free nitrile. © 2007 Elsevier B.V. All rights reserved.

Keywords: Aluminium; Silyl complexes; Structure; Nitrile insertion

1. Introduction

The tris(trimethylsilyl)silyl (hereafter "sisyl"; elsewhere, also, "hypersilyl") ligand $[Si(SiMe_3)_3]^-$ has featured in much interesting chemistry. The compound Li[Si(SiMe_3)_3], originally obtained from Si(SiMe_3)_4 and LiMe [1], was characterised as the tris(thf) adduct [2]; its potassium analogue was later made from Si(SiMe_3)_4 and KOBu^t [3]. The X-ray structure of [Li{Si(SiMe_3)_3}(thf)_3] (A) has been published [4]. Compound A has been widely used as a sisyl ligand transfer agent for *inter alia* Zn[Si(SiMe_3)_3]_2 [5], [Mg{Si(SiMe_3)_3}_2(thf)_2] (B) [6], [Al(tmp)_2{Si(SiMe_3)_3}] [7] and [AlEt{Si(SiMe_3)_3}(\mu-Et)]_2 [8]; while [K{Si(SiMe_3)_3} (thf)_2] was employed as a precursor to [Al{Si(SiMe_3)_3}-X_2(thf)] (X = Cl, Br, I) [9].

2. Results and discussion

Our interest in sisylaluminium compounds arose from the discovery that the alkali metal and magnesium compounds, including A and B, upon treatment with 2,6-dimethyl(cyano)benzene gave interesting metal 3-sila β -diketiminates including the crystalline compounds C [10] and D [11]. We therefore sought two methylaluminium sisyls as potential precursors to corresponding 3-sila- β -diketiminates.

The two crystalline mononuclear methylaluminium sisyls **1** and **2** were prepared in good yield, as shown in Scheme 1. Each was characterised by satisfactory microanalysis (C, H, N) and ¹H NMR spectra, and compound **1** also by its X-ray molecular structure. Attempts to obtain good quality crystals of **2** for X-ray analysis were hampered by its extremely high solubility in Et₂O, thf, PhMe or C_5H_{12} , such that crystals isolated from a concentrated solution dissolved in the co-crystallised solvent.

The ²⁹Si{¹H} NMR spectrum of **1** in C₆D₆ failed to reveal a signal between 80 and -200 ppm for the ²⁹Si nucleus adjacent to the aluminium atom, attributed to broadening of the signal due to coupling with ²⁷Al. The ²⁹Si (of the SiMe₃ moieties) and ²⁷Al signals for **1** were found at similar frequencies as in the NMR spectra of [Al(tmp)₂{Si(*Si*Me₃)₃}] (at δ -7.9 and +186, respectively) [7], which also failed to record a value for the α -Si. However, such data for the α -Si were observed at δ -81 ± 0.3 ppm for the compounds [Al{Si(SiMe₃)₃}-X₂(thf)] (X = Cl, Br, I) with the *Si*Me₃ value at δ -8.4 ± 0.3 ppm [9].

^{*} Corresponding author. Tel.: +44 1273 678316; fax: +44 1273 677196. E-mail address: m.f.lappert@sussex.ac.uk (M.F. Lappert).

⁰⁰²²⁻³²⁸X/\$ - see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2007.08.018

Scheme 1. Reagents: (i) AlClMe₂, C₆H₁₄; (ii) AlCl₂Me, C₆H₁₄/Et₂O.

The molecular structure of the crystalline compound 1 is shown as an ORTEP representation in Fig. 1. Selected bond lengths and angles are listed in Table 1 together with corresponding data for the sterically closely similar compound $[AlX_2{Si(SiMe_3)_3}(thf)]$ [9]. The AlX_2 moiety has a more positive aluminium atom in the latter (X = Cl) than in 1 (X = Me); hence it is not surprising that both the Al–Si(1) and Al–O distances are longer in 1.

Attempts at derivatisation of each of the compounds **1** and **2**, by treatment with the α -H-free nitrile PhCN, 2,6-Me₂C₆H₃CN or Bu^{*i*}CN, failed to reveal any insertion of the latter into the Al–Me or Al–Si bond. ¹H NMR spectra in PhMe-*d*₈ showed minor shifts of ¹H NMR signals of **1** or **2**, which may have been due to some displacement of coordinated thf by the nitrile. In contrast to the observation of C₂H₄ polymerisation activity by cationic methylaluminium amidinates such as [AlMe{N(Pr^{*i*})C(Me)NPr^{*i*}}] [B(C₆F₅)₄][12], neither **1** nor **2** in presence of MAO showed any reaction with C₂H₄ under ambient conditions.

Fig. 1. ORTEP representation of the molecular structure of $1 \ (20\%$ ellipsoids).

Table 1								
Selected	bond	lengths	(Å)	and	angles	(°)	for	[Al{Si(SiMe ₃) ₃ }X ₂ (thf)]
(37) ((1) 0	1 503						

	$\mathbf{X} = \mathbf{Me} \ (1)$	X = Cl[9]			
Al-Si(1)	2.4747(16)	2.4101(13)			
Al–X	1.978(5), 1.988(4)	2.1443(8), 2.1545(9)			
Al–O	1.929(3)	1.8668(4)			
Si(1)–Si	2.3336(13), 2.3419(14),	2.3380(8), 2.3453(10),			
	2.3432(15)	2.3527(9)			
O-Al-Si(1)	107.79(12)	111.93(6)			
O–Al–X	101.67(19), 101.77(17)	100.94(5), 101.46(5)			
X–Al–X	117.0(2)	110.23(4)			
Al-Si(1)-Si	103.77(6), 112.39(6),	104.14(4), 111.14(4),			
	115.34(6)	111.91(3)			

3. Experimental

All manipulations were carried out under argon using standard Schlenk and vacuum line techniques. Hexane and pentane were dried using sodium-potassium alloy. Diethyl ether was dried and distilled from sodium benzophenone and stored over a sodium mirror. [Li{Si(Si- Me_{3} (thf)₃ was prepared by a literature procedure [3]; the 1 molar solutions of $AlCl_{3-n}Me_n$ in hexane were purchased (Aldrich). The NMR spectra were recorded at 293 K in C_6D_6 on Bruker DPX 300 (300.1 MHz for ¹H, 75.5 MHz for ¹³C) or AMX 500 (49.7 MHz for ²⁹Si and 131.31 MHz for 27 Al) and referenced internally to residual solvent resonances $({}^{1}H, {}^{13}C)$ or externally $({}^{29}Si$ using SiMe₄: ²⁷Al using aqueous AlCl₃ with a D_2O lock). The electron impact mass spectrum of 1 was taken on a solid sample using a Kratos MS 80 RF instrument. Elemental analyses were carried out by Medac Ltd., UK, Brunel University.

3.1. Preparation of $[AlMe_2{Si(SiMe_3)_3}(thf)]$ (1)

A solution of AlClMe₂ (1 M in hexane, 9.29 cm³, 9.29 mmol) was added dropwise to a stirred suspension of [Li{Si(SiMe₃)₃}(thf)₃] (A) (4.37 g, 9.28 mmol) in pentane (30 cm³) at ambient temperature. After *ca*. 14 h the mixture was filtered. The filtrate was concentrated and stored at $-30 \,^{\circ}$ C for 1 day, yielding white crystals of compound 1 (2.83 g, 81%) (Anal. Calc. for C₁₅H₄₁AlOSi₄: C, 47.8; H, 10.97. Found: C, 49.6; H, 10.31%), decomposition 116 $^{\circ}$ C. ¹H NMR: δ –0.31 (br s, 6H, AlMe₂), 0.41 (s, 27H, Si{SiMe₃}₃), 1.03 (m, 4H, thf), 3.46 (m, 4H, thf); ¹³C{¹H} NMR: δ –4.58 (AlMe₂), 4.47 (SiMe₃), 25.08 (thf), 71.22 (thf); ²⁹Si{¹H} NMR: δ –8.71 (Si{*SiMe₃*}₃); ²⁷Al{¹H} NMR: δ 190 ($\Delta \omega^{1/2}$ 3.3 Hz). EI-MS: *m/z*, assignment (%) 304 [AlMe₂{Si(SiMe₃)₃]⁺ (52), 289 [AlMe-{Si(SiMe₃)₃]⁺ (66), 232 [Si(SiMe₃)₂SiMe₂]⁺ (100).

3.2. Preparation of $[AlMe{Si(SiMe_3)_3}_2(thf)]$ (2)

A solution of AlCl₂Me (1 M in hexane, 1.79 cm^3 , 1.79 mmol) was added dropwise to a stirred solution of A

Table 2 Crystal data and structure refinement for **1**

Empirical formula	C ₁₅ H ₄₁ AlOSi ₄
Formula weight	376.82
Crystal system	Orthorhombic
Space group	<i>Pna2</i> ₁ (No. 33)
a (Å)	19.5787(8)
b (Å)	12.9138(7)
c (Å)	9.9808(5)
$V(\text{\AA}^3)$	2523.5(2)
Ζ	4
$d_{\rm calc} ({\rm Mg/m^3})$	0.99
μ (Mo K α) (mm ⁻¹)	0.27
Reflections collected	9000
Independent reflections (R_{int})	4104 (0.060)
Reflections with $I \ge 2\sigma(I)$	3456
Data/restraints/parameter	4104/1/191
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.049, wR_2 = 0.110$
R indices (all data)	$R_1 = 0.064, wR_2 = 0.120$

(1.69 g, 3.59 mmol) in diethyl ether (20 cm³) at ambient temperature. The mixture was stirred for *ca.* 1 h, whereafter volatiles were removed *in vacuo* and the residue was extracted into pentane (2 × 30 cm³). The extract was concentrated and cooled at $-30 \,^{\circ}$ C for 2 days, yielding white crystals of compound **2** (0.88 g, 91%), m.p. 58–60 °C (Anal. Calc. for C₂₃H₆₅AlOSi₈: C, 45.3; H, 10.75. Found: C, 46.1; H, 10.26%). ¹H NMR: δ –0.10 (s, 3H, AlMe), 0.41 (s, 54H, Si{SiMe₃}), 1.28 (m, 4H, thf), 3.57 (m, 4H, thf); ¹³C{¹H} NMR: δ –4.53 (AlMe), 4.43 (SiMe₃), 25.09 (thf), 71.23 (thf).

4. Crystal data and refinement details for 1

Diffraction data were collected on a Enraf-Nonius Kappa-CCD diffractometer using monochromated Mo K α radiation, λ 0.71073 Å at 173(2) K. The crystal was coated in oil and then directly mounted on the diffractometer under a stream of cold nitrogen gas. The structure was refined on all F^2 using SHELXL-97 [13]. An absorption correction was applied using MULTISCAN. The illustration of Fig. 1 used ORTEP-3 for Windows (20% ellipsoids). Further details are in Table 2.

Acknowledgement

We thank BASF (Ludwigshafen) and Dr. H. Görtz and G. Luinstra for the award of a studentship for J.D.F. and Dr. A. V. Protchenko for useful comments.

Appendix A. Supplementary material

CCDC 651715 contains the supplementary crystallographic data for 1. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk. Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jorganchem.2007.08.018.

References

- H. Gilman, J.M. Holmes, C.L. Smith, Chem. Ind. (London) (1965) 848.
- [2] G. Gutekunst, A.G. Brook, J. Organomet. Chem. 225 (1982) 1.
- [3] C. Marschner, Eur. J. Inorg. Chem. (1998) 221.
- [4] (a) H.V.R. Dias, M.M. Olmstead, K. Ruhlandt-Senge, P.P. Power, J. Organomet. Chem. 462 (1993) 1;
- (b) A. Heine, R. Herbst-Irmer, G.M. Sheldrick, D. Stalke, Inorg. Chem. 32 (1993) 2694.
- [5] J. Arnold, T.D. Tilley, A.L. Rheingold, S.J. Geib, Inorg. Chem. 26 (1987) 2106.
- [6] J.D. Farwell, M.F. Lappert, C. Marschner, C. Strissel, T.D. Tilley, J. Organomet. Chem. 603 (2000) 185.
- [7] K. Knabel, I. Krossing, H. Nöth, H. Schwenk-Kircher, M. Schmidt-Amelunxen, T. Seifert, Eur. J. Inorg. Chem. (1998) 1095.
- [8] R. Wochele, K.W. Klinkhammer, J. Weidlein, Z. Anorg. Allg. Chem. 627 (2001) 1420.
- [9] M. Schormann, K.S. Klimek, H. Hatop, S.P. Varkey, H.W. Roesky, C. Lehmann, C. Röpken, R. Herbst-Irmer, M. Noltemeyer, J. Solid State Chem. 162 (2001) 225.
- [10] P.B. Hitchcock, M.F. Lappert, M. Layh, Chem. Commun. (1998) 2179.
- [11] J.D. Farwell, P.B. Hitchcock, M.F. Lappert, A.V. Protchenko, Chem. Commun. (2005) 2271.
- [12] M.P. Coles, R.F. Jordan, J. Am. Chem. Soc. 119 (1997) 8125.
- [13] G.M. Sheldrick, SHELXL-97 Program for Crystal Structure Refinement, University of Göttingen, 1997.